

□ (+1) 734-546-5139 | ☑ liuxs@umich.edu | ★ xenshinu.github.io | ☑ xenshinu | ➤ publications

Introduction

I am a 4th-year Ph.D. candidate in Computer Science & Engineering (CSE) Division at the University of Michigan, advised by Prof. Z. Morley Mao. My research interests focus on **distributed systems** and **parallel computing**. Currently, I am exploring efficient solutions for training, inference, and reinforcement learning (RL) of **large language models (LLMs)** by designing **elastic** and **heterogeneous** systems.

Education

University of Michigan (UMich)

Ann Arbor, Michigan, U.S.

GPA: 3.9/4.0 Aug. 2020 - Aug. 2022 - Present

7 dg. 2020 7 dg. 2022 7 1030

Shanghai Jiao Tong University (SJTU)

PH.D. & B.S. IN COMPUTER SCIENCE AND ENGINEERING (CSE)

Shanghai, Chind

B.S. IN ELECTRICAL AND COMPUTER ENGINEERING (ECE) GPA: 3.7/4.0 Outstanding Graduates

Aug. 2018 - Aug. 2022

Projects & Publications

GPU States Checkpointing for Distributed Elastic Serving Systems

Ongoing

NSDI'26

KEYWORDS: CUDA DRIVER, CUDA GRAPH, CHECKPOINTING, ELASTIC SERVING

· Save a selected range of CUDA states into an image to skip warmup during elastic serving.

Sept. 2025 – Present

RLBoost: Harvesting Preemptible Resources for Cost-Efficient Reinforcement Learning on LLMs

May 2025 - Dec. 2025

KEYWORDS: LLM RL, SPOT INSTANCES, KUBERNETES, VERL, SGLANG, FSDP

- RLBoost adaptively offloads rollout workloads to preemptible instances, achieving up to 49% cost reduction for LLM RL.
- Designed token-level rollout tracking to minimize preemption loss and balance workload across heterogeneous instances.
- Designed a pull-based weight transfer mechanism that allows dynamic resources to join rollout seamlessly with minimal overhead.

HeterMoE: Efficient Training of Mixture-of-Experts Models on Heterogeneous GPUs

In Submission

KEYWORDS: LLM TRAINING, NCCL, MIXTURE-OF-EXPERT, DEEPSPEED, HETEROGENEITY

April. 2024 - April. 2025

- HeterMoE disaggregates MoE models and assigns experts to old GPUs (e.g. V100, T4) to maximize hardware utilization and reduce cost.
- Designed zebra parallelism to overlap the communication and computation between attention and experts.
- · Achieved fine-grained automatic load balancing between GPUs of different generations through asymmetric expert assignment.

Plato: Plan to Efficiently Decode for Large Language Model Inference

COLM'25

KEYWORDS: LLM Inference, Parallel Decoding, Structured Decoding, KV-cache

Oct. 2024 - Jul. 2025

• *Plato* decomposes complicated questions into sub-problems with a **dependency graph**, and accelerates generation through context-aware parallel decoding.

Compute Or Load KV Cache? Why Not Both? (CAKE)

ICML'25

KEYWORDS: LLM INFERENCE, KV-CACHE, CHUNK PREFILL, LONG CONTEXT, VLLM, LMCACHE

Sept. 2024 - Feb. 2025

• CAKE reduces LLM prefill latency on long-context through a **bidirectional KV cache generation** strategy, overlapping computation and I/O transfer. Implementation is based on vLLM and LMCache.

Learn-To-be-Efficient (LTE): Build Structured Sparsity in Large Language Models

NeurIPS'24 (Spotlight)

KEYWORDS: LLM Efficiency, Structured Sparsity, Moe, Gather-scatter, Triton

Mar. 2024 - Oct. 2024

- LTE trains LLMs to activate fewer neurons through structured sparsity while maintaining accuracy.
- LTE proposes an efficient gather-scatter MLP kernel that achieves linear speedup w.r.t. sparsity.

mm2-gb: GPU Accelerated Minimap2 for Long Read DNA Mapping

ACM BCB'24 (Oral)

KEYWORDS: GPU, DNA MAPPING, MINIMAP2, ROCM, HIP, PERSISTENT KERNEL

May. 2022 - Oct. 2024

- mm2-gb is based on minimap2-v2.24 with AMD GPU accelerated chaining kernel for high throughput accurate mapping of ultra-long DNA reads.
- mm2-gb exploits finer levels of parallelism by dividing reads into segments. It then leverages **split-kernels** and **prioritized scheduling with persistent kernel** to tackle extremely irregular workloads.

Experience

Student Researcher at Google

Seattle, Washington, U.S.

System Research @ Google, Google | Hosts: Juncheng Gu, Arvind Krishnamurthy, Hank Levy

May. 2025 - Dec. 2025

- Characterized workload bottlenecks across the LLM RL pipeline, identifying rollout as a dominant yet highly elastic component suitable for small, dynamically available instances.
- Designed and implemented RLBoost on Google Cloud Platform (GCP), harvesting fragmented spot resources to lower RL training cost and improve the resource utilization on the cloud.
- Explored heterogeneous compute options on GCP (multi-generation GPUs & TPUs) to evaluate rollout efficiency under diverse RL rollout work-loads (sequence length, tool calling, etc.).
- · Contributed to an NL2SQL agentic training pipeline, optimizing multi-node communication and applying asynchronous tool calling.

Graduate Student Instructor Ann Arbor, Michigan, U.S.

CSE-589 ADVANCED COMPUTER NETWORKS, UNIVERSITY OF MICHIGAN

Led in-class discussions, held office hours, and delivered a lecture on distributed software-defined networking (dSDN).

Mentored graduate students on research projects, providing guidance on methodologies, technical skills, and project development.

Intern Researcher at General Motors

Warren, Michigan, U.S.

CONNECTED AUTONOMOUS VEHICLE (CAV) LAB, GENERAL MOTORS HOSTS: FAN BAI, BO YU

May. 2024 - Aug. 2024

Sept. 2024 - Dec. 2024

- Designed a large scale latency-tolerant vehicle positioning system on the edge/cloud servers.
- Developed a deep factor graph model to handle delayed perception data, ensuring real-time responsiveness through parallelism.

Services & Honors

2024-2025 Reviewer, ICLR'26, ICLR'25, COLING'25

Aug. 2024 Invited Talk, Scalable & Latency-tolerant Edge/cloud Computing via Deep Factor Graph

General Motors

May 2024 Invited Talk, AMD HPC Apps Knowledge Sync: Minimap2-gigabases (mm2-gb)

AMD

Aug. 2021 Roger King Scholarship, College of Engineering of University of Michigan

UMich

Aug. 2019 Runner-up Team & Grand Prize, 18th Robomaster Final Competition

Skills

Machine Learning VeRL, Pytorch, DeepSpeed, NCCL, SGLang, vLLM, Flash-attn, LMCache, HuggingFace, CUTLASS

Programming Language Python, Rust, Triton, CUDA, HIP, C/C++, Golang, LLVM

Development & Profiling Kubernetes, Nsight-system/compute, MCP, Cusor/Codex, Perfetto, Slurm, Docker, Git